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Abstract The performance of several semi-empirical expressions for correlating the
temperature, pressure and composition dependence of the thermal conductivity (λ) of
pure organic liquids and mixtures was investigated. The temperature and pressure
dependence is adequately represented by Chisholm approximants of order (1, 1) or
(2, 1) with five and eight adjustable constants, respectively. The fully predictive Vrede-
veld equation uses mass fractions as the composition variable. It significantly under-
estimated λ values for the R32 + R125 + R134a ternary refrigerant system. Binary
predictive models with one or two adjustable parameters include the quadratic Scheffé
polynomial and its corresponding Padé approximant, the cubic “Margules” model and
the theoretical Wassiljewa equation. It was found that the Padé (2, 2) approximant and
the Wassiljewa equation satisfactorily correlated the extensive ternary mixture data
published by Rowley and coworkers. Best results were obtained when the mole frac-
tion was used as a composition variable. The predictive capability of the models was
checked using the R32 + R125 + R134a ternary refrigerant system. Combining rules
were used for cross parameters such that the temperature and pressure dependence
was incorporated via the pure fluid properties. Model parameters were fixed using
binary data alone. In this case, the quadratic Scheffé, Padé (2, 2), and Wassiljewa
(with temperature- and pressure-independent parameters) all provided satisfactory
predictions for ternary mixtures.
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1 Introduction

Heat transfer equipment design requires accurate thermophysical properties data for
the working fluids. Such fluids include alkanes employed as heat carriers and thermal
storage materials [1] and HFC refrigerants used in refrigeration and heat pump sys-
tems [2–14]. The thermal conductivity is a relevant transport property affecting heat
transfer performance. Like other fluid physical properties, it is a complex function
of temperature, pressure, and composition [15]. Experimental data for ternary mix-
tures are scarce. Predictive theoretical methods [14–19] are, therefore, indispensable.
Nevertheless, empirical and semi-empirical approaches remain important as they may
well provide more accurate representations of validated experimental data.

This communication considers semi-empirical approaches for correlating thermal-
conductivity data for multicomponent liquid mixtures as a function of pressure, tem-
perature, and composition. Literature methods employed for ternary mixture data
are critically reviewed. Alternative approaches are suggested and their performance
evaluated using published experimental data. The ultimate objective is to find simple
correlating equations with a few (preferably temperature independent and pressure
independent) adjustable parameters.

2 Model Development

2.1 Pure-Component Thermal Conductivity

Pure-component liquid thermal conductivity depends on the system temperature and
pressure. For data gathered at atmospheric pressure, only the temperature dependence
is relevant. Wada et al. [1] found that a linear temperature dependence applies in the
case of liquid alkanes:

λ = a0 + a1T, (1)

here λ is the thermal conductivity in W · m−1 · K−1, T is the absolute temperature in
K, and the ai ’s are constants. According to Yata et al. [2], a linear relationship also
holds for the thermal conductivity of refrigerants in the saturated liquid state, but Ro
et al. [3] correlated such data using a second-order polynomial:

λ = a0 + a1T + a2T 2 (2)

The use of polynomials to approximate functions in a small interval is justified
by Taylor’s theorem [20]. The coefficients ak are related to the first derivatives of
the thermal conductivity evaluated at an appropriate reference temperature. Taylor
polynomials are partial sums or truncated versions of such Taylor series expansions.
They tend to provide good approximations for the value of the function near the point
of expansion. However, the approximation error of a given Taylor expansion may
increase rapidly at points further away.
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Padé approximants are rational polynomials used to approximate a function in one
variable [21]. They offer greater versatility in representing nonlinear data trends and
usually provide superior data fits with the same number of adjustable parameters within
an interval of interest [22]. A Padé approximant of order (m, n), in temperature as the
variable, is defined by:

λ = a0 + a1T + a2T 2 + · · · + am T m

1 + b1T + b2T 2 + · · · + bnT n
(3)

Note that, following the standard convention, the leading coefficient of the denominator
polynomial is set equal to unity. According to Gerald [23], the most useful Padé
approximants are those where the order of the numerator polynomial is the same or
one greater than the degree of the denominator polynomial. A Padé approximant of
order (1, 1) is expected to perform equally well or better than the quadratic Taylor
polynomial defined by Eq. 2:

λ = a0 + a1T

1 + b1T
(4)

For refrigerants, several investigators [2–8] represented the combined temperature
and pressure dependence, of pure and specific binary and ternary refrigerant mixtures,
by the following polynomial:

λ =
2∑

i=0

2∑

j=0

ai j T
iP j (5a)

An equivalent matrix product form is

λ =
(

1, T, T 2
)

⎡

⎣
a00 a01 a02
a10 a11 a12
a20 a21 a22

⎤

⎦

⎛

⎝
1
P
P2

⎞

⎠ (5b)

Equation 5 has nine adjustable coefficients, and thus, much experimental effort is
required for their determination. Jeong et al. [11] reduced the number of parameters
to be fitted by arbitrarily setting the coefficients for the cross terms TP and T 2 P2, i.e.,
a11 and a22, equal to zero. The number of adjustable constants can be trimmed to as
few as five if Eq. 5 can be factored as follows:

λ =
(

b0 + b1T + b2T 2
) (

1 + c1 P + c2 P2
)

(6)

This implies that

⎡

⎣
a00 a01 a02
a10 a11 a12
a20 a21 a22

⎤

⎦ =
⎡

⎣
b0 b0c1 b0c2
b1 b1c1 b1c2
b2 b2c1 b2c2

⎤

⎦ (7)
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Temperature and pressure are independent variables, and therefore, the second-
order bivariate Taylor polynomial, with six adjustable parameters, has a more rigorous
mathematical foundation:

λ =
2∑

i=0

2−i∑

j=0

ai j T
iP j = a00 + a01 P + a02 P2 + a10T + a11TP + a20T 2 (8)

Again, it is expected that a rational function in two variables would provide superior
data representation of a function inside a finite domain. Such Padé rational polynomials
in two variables are also called Chisholm approximants. As for Padé, it is anticipated
that Chisholm approximants with the same number of adjustable coefficients will
perform better than simple multivariate Taylor polynomial expansions. The Chisholm
approximants of orders (1, 1) and (2, 1) are defined by Eqs. 9 and 10, respectively:

λ = a0 + a1T + a2 P

1 + b1T + b2 P
(9)

λ = a0 + a1T + a2 P + a11T 2 + a12TP + a22 P2

1 + b1T + b2 P
(10)

2.2 Mixture Thermal Conductivity

From an engineering point of view, the mixture composition can be expressed in any
convenient manner. The technical literature reveals a distinct preference for the use
of mass fractions to correlate the effect of composition on liquid thermal conductivity
[1–14]. However, from a thermodynamic perspective, the use of mole fractions seems
more appropriate. Independent of whether volume (ϕi ), mass (wi ), or mole (xi ) frac-
tions are used to characterize composition, the corresponding fractions are subject to
the restrictions:

0 ≤ zi ≤ 1 and �zi = 1 (11)

where z ∈ {ϕ,w, x} and the summation is over the n distinct components making up
the mixture.

The “linear blending rule” provides the simplest concentration dependence. It states
the general expectation that mixture properties vary linearly with composition:

λ ≡
n∑

i=1

λi zi = λ1z1 + λ2z2 . . . λnzn (12)

In Eq. 12, n is the number of components in the mixture, λi denotes the pure compo-
nent property value and zi the volume, mass, or mole fraction of component i in the
mixture. The linear blending rule is a predictive equation, since there are no adjustable
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parameters in the correlation. It represents a weighted arithmetic mean over the pure-
component properties. Weighted power means provide a more general approach to
predictive correlation equations. The power mean of order p is defined as follows:

λp =
n∑

i=1

λ
p
i zi = λ

p
1 z1 + λ

p
2 z2 . . . λ

p
n zn (p �= 0)

λ =
n∏

i=1

λ
zi
i = λ

z1
1 λ

z2
2 . . . λzn

n (p = 0) (13)

Spindler et al. [13] found that choosing p = −0.65 and using mass fractions as
composition variables provides good agreement between predictions and the experi-
mental data for the ternary mixture R407C.

Poling et al. [14] reviewed empirical equations for predicting binary liquid mixture
thermal conductivity. Some methods are limited to binary mixtures as they can not
be extended to ternary or higher mixtures, while others are complicated and/or need
additional information [24,25]. Poling et al. [14] found that the better methods show
comparable performance for binary mixtures. The simplest of these is the inverse root-
mean-square mixing rule, i.e., with p = −2 in Eq. 13, first enunciated by Vredeveld
in 1973 [14].

Several investigators [3–5,7,10] effectively fit binary refrigerant mixture data to
polynomial expansions of the form,

λ =
2∑

i=0

2∑

j=0

2∑

k=0

ai jk T iP jwk
1 (14)

here w1 represents the mass fraction of component 1 in the binary mixture, T is the
absolute temperature in K, and P is the pressure in bar. In expanded form, this equation
reads

λ =
2∑

i=0

2∑

j=0

ai j0T iP j + w1

2∑

i=0

2∑

j=0

ai j1T iP j + w2
1

2∑

i=0

2∑

j=0

ai j2T iP j (15)

This equation for a binary mixture has 27 adjustable coefficients ai jk . Pure-component
1 and pure-component 2 behavior are indicated by w1 = 1 and w1 = 0, respectively. In
these two cases, the equation reduces to the following two limiting forms, respectively:

λ1 = λw1=1 =
2∑

i=0

2∑

j=0

(
ai j0 + ai j1 + ai j2

)
T iP j (16)
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λ2 = λw1=0 =
2∑

i=0

2∑

j=0

ai j0T iP j (17)

Both these equations are of the form defined by Eq. 5 for pure refrigerants. Thus, of
the 27 adjustable coefficients in Eq. 15, 18 are established by the pure-component
behavior and the remaining nine are determined from binary data.

Gao et al. [7] proposed the following model for binary mixtures:

λ =
2∑

i=0

2∑

j=0

a′
i j0T iP j

⎡

⎣1 + w1

2∑

i=0

2∑

j=0

a′
i j1T iP j + w2

1

2∑

i=0

2∑

j=0

a′
i j2T iP j

⎤

⎦ (18)

In this case, the pure component 2 behavior is obtained with w = 0 as before. How-
ever, for w = 1 an entirely different temperature and pressure polynomial results
with exponents up to T 4 P4. Equation 18 is, therefore, a less satisfactory option for
representing binary mixture data.

Equation 14, as shown more clearly by Eq. 15, effectively implies quadratic compo-
sition dependence for the thermal conductivity. Unfortunately in the format presented,
it is not clear how this model could be extended to ternary and higher mixtures. Sub-
sequently, Jeong et al. [11] proposed the following expression for ternary refrigerant
mixtures:

λ = w1λ1 + w2λ2 + w3λ3 + α12w1w2

√
λ1λ2

+α13w1w3

√
λ1λ3 + α23w2w3

√
λ2λ3

+
(
ε1w1w2w3 + ε2w

2
1w

2
2w

2
3 + ε3w

3
1w

3
2w

3
3

)
3
√

λ1λ2λ3, (19)

here the αi j and the εi are temperature-independent coefficients. This proposal has sev-
eral attractive features: firstly, pure-component properties are unambiguously recov-
ered when the corresponding mass fraction is set equal to unity (wi = 1); and second,
the temperature and pressure dependence of the mixture is determined entirely by that
of the pure components. That means that no new temperature functions need to be
introduced in order to describe their effect on the properties of the ternary mixture. A
drawback of this proposal is that while the composition dependence is quadratic for
binary mixtures, this is not the case for the ternary mixture with the model containing
composition terms up to the ninth order! These higher coefficients require ternary data
for their evaluation.

The above observations point to a need for improved models to represent thermal-
conductivity composition dependence. Engineers prefer fully predictive models but
will settle for binary predictive models when these are not accurate enough. The latter
are models that feature parameters that, in principle at least, are fully determined once
data for binary mixtures are at hand. To this end two general approaches are considered
here: Scheffé polynomials [26,27] and their rational polynomial extensions [28] and
the general power mean mixture model [29].
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2.3 Scheffé Polynomials and Padé Approximants as Mixture Rules

Scheffé polynomials are in essence Taylor polynomial expansions in composition that
take the simplex constraint, Eq. 11, into account [26]. The homogeneous quadratic
form for a ternary mixture is [27]

λ = λ11x2
1 + λ22x2

2 + λ33x2
3 + 2λ12x1x2 + 2λ13x1x3 + 2λ23x2x3 (20)

Note that this equation has only one adjustable parameter per binary in the mix-
ture. Suitable Padé approximants corresponding to rational extensions of Scheffé
polynomials may be defined as ratios of homogeneous Scheffé polynomials [28].
The binary-predictive requirement apparently limits one to quadratic polynomials (or
lower) forms:

λ = a11x2
1 + a22x2

2 + a33x2
3 + 2a12x1x2 + 2a13x1x3 + 2a23x2x3

b11x2
1 + b22x2

2 + b33x2
3 + 2b12x1x2 + 2b13x1x3 + 2b23x2x3

(21)

Note that the pure-component thermal conductivity is now given by the ratio λi =
aii/bii . While other approaches nay hold promise [28], for convenience, it is arbitrarily
assumed here that bii = 1 ∀ i , i.e.,

λ = λ11x2
1 + λ22x2

2 + λ33x2
3 + 2λ12x1x2 + 2λ13x1x3 + 2λ23x2x3

x2
1 + x2

2 + x2
3 + 2b12x1x2 + 2b13x1x3 + 2b23x2x3

(22)

The cross parameters in Eqs. 20–22 are expected to be functions of temperature and
pressure. Thus, one would need binary data over the full temperature and pressure
range to fully determine λi j . This predicament can be overcome by postulating suitable
combining rules as discussed later.

2.4 Weighted Power Mean Mixture Model

An alternative approach is provided by the weighted power mean mixture model [29].
The essence of this model can be summarized as follows: intermolecular interactions
have an extremely short range. This justifies the assumption that only binary molecular
interactions need to be considered. In this context, a liquid mixture may be viewed as an
assembly of hypothetical clusters defined by the nature of a central molecule together
with its nearest neighbors. Every fluid physical property, e.g., thermal conductivity λ,
is ultimately determined by binary interactions between the central molecules and their
neighbors in the cluster. The effect of these interactions, on the values that the physical
property will assume, is captured by a matrix of binary coefficients L = [λi j ]. The
following notation is used: the subscript i indicates the nature of the central molecule
in the cluster and j the nature of a neighboring molecule. In a pure component i
fluid, all the interactions are identical and their effect on the thermal conductivity is
described by the parameter λi i . It immediately follows that λi i is equivalent to the
thermal conductivity of the pure component i , i.e., λi i = λi .
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In this context, a mixture model is defined once prescriptions for (i) estimating fluid
cluster properties, and (ii) ways of combining them to yield an overall mixture property,
are given. A particularly flexible form is obtained when both prescriptions entail
global composition-weighted power means [29]. The cluster property is expressed as
a composition-weighted power mean of order s over the cluster interactions λi j :

ui (x) =
(

n∑
k=1

xkλ
s
ik

)1/s

(s ∈ R, s �= 0)

ui (x) =
n∏

k=1
λ

xk
ik (s = 0)

(23)

The overall fluid property is given by a weighted power mean of order r over the
cluster properties:

λ =
(

n∑
i=1

xi [ui (x)]r
)1/r

(r ∈ R, r �= 0)

λ =
n∏

i=1
(ui (x))xi (r = 0)

(24)

For r , s �= 0, the weighted power mean mixture model takes the form,

λ =
⎡

⎢⎣
n∑

i=1

xi

⎛

⎝
n∑

j=1

x jλ
s
i j

⎞

⎠
r/s

⎤

⎥⎦

1/r

(25)

Equation 25 only features binary adjustable parameters. Thus, in principle at least,
it predicts multicomponent behavior from knowledge of pure component and binary
mixture data. Furthermore, Eq. 25 is a generalized model form as it includes several
other well-known mixture models, e.g., quadratic and cubic Scheffé polynomials, etc.,
as special cases [29]. For example, the quadratic Scheffé polynomial is obtained setting
s = r = 1. For a ternary mixture, it reads

λ = λ11x2
1 + λ22x2

2 + λ33x2
3 + (λ12 + λ21) x1x2 + (λ13 + λ31) x1x3

+ (λ23 + λ32) x2x3 (26)

Comparing coefficients with Eq. 20 shows that λi j = λ j i for Scheffé polynomials.
The cubic homogeneous Scheffé polynomial for a ternary mixture is defined by

λ = λ111x3
1 + λ222x3

2 + λ333x3
3 + 3λ112x2

1 x2 + 3λ122x1x2
2 + 3λ113x2

1 x3

+ 3λ133x1x2
3 + 3λ223x2

2 x3 + 3λ233x2x2
3 + 6λ123x1x2x3 (27)

Ternary mixture data are required to fix the value of the ternary constant λ123. It
cannot be determined from binary data alone. The desire that knowledge of pure and
binary data should suffice to fix model parameters apparently disqualifies this and other
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higher-order Scheffé polynomials from consideration. However, the general power
mean mixture model yields nth order Scheffé K-polynomials, with two constants per
binary, if one sets r = 1 and s = 1/(n − 1). For example, n = 3 (i.e., s = 1/2) yields a
cubic Scheffé polynomial. Expansion of the formula, collecting terms, and comparing
the coefficients with those in Eq. 28 reveals that

λi i i = λi i = λi (28)

and

λi jk = 1

3

(√
λi jλik + √

λ j iλ jk + √
λkiλk j

)
(29)

Setting r = 1 and s = −1 in Eq. 25 yields the following expression:

λ =
n∑

i=1

xi∑n
j=1 x j/λi j

(30)

Defining �i j = λi i/λi j , Eq. 30 may be rearranged to yield the familiar form of
the theoretical Wassiljewa [30] expression for the thermal conductivity of dilute hard-
sphere gases:

λ =
n∑

i=1

λi i xi∑n
j=1 �i j x j

(31)

Dey et al. [31] recently drew attention to the utility of the Wassiljewa model for the
correlation of isothermal liquid mixture conductivity.

2.5 Combining Rules for Cross Parameters

Combining rules express cross parameters in terms of pure-component properties.
Equation 31 was initially derived for the thermal-conductivity data of dilute gases.
For this situation, the �i j are connected to molecular properties by the following
combining rule [15]:

�i j =
(

σi + σ j

2σi

)2
√

Mi + M j

2M j
(32)

Here σi is the molecular radius and Mi is the molar mass of molecular species i .
Equation 32 states that the �i j only depends on molecular properties, i.e., funda-
mentally they are temperature- and pressure-independent parameters. This suggests
the following combining rule for the temperature-pressure dependence of the cross
parameters of the weighted power mean mixture model:

123



Int J Thermophys (2008) 29:1342–1360 1351

λ =
⎡

⎢⎣
n∑

i=1

λr
ii xi

⎛

⎝
n∑

j=1

x j�
−s
i j

⎞

⎠
r/s

⎤

⎥⎦

1/r

(33)

In effect, it is assumed that the temperature dependence for properties of cluster i
is the same as that for pure component i . For the Scheffé model, where r = 1 and
s = 1, the combining rule becomes

2λ12 = λ11/�12 + λ22/�21 (34)

Note that, with this combining rule, the Scheffé model effectively has two adjustable
parameters per binary.

Dey et al. [31] also proposed a fully predictive version for Eq. 31 by expressing �i j

as follows:

�i j = 1

4

[
1 +

√
λi i

λ j j

(
Mi

M j

)3/8
]2

(35)

However, since the λi i are temperature and pressure dependent, their proposal also
makes the �i j functions of temperature and pressure. It was, therefore, not considered
here.

The geometric combining rule provides an alternative for quadratic Scheffé poly-
nomials and Padé approximants:

λi j = αi j
√

λi iλ j j (36)

here the αi j are deemed to be temperature- and pressure-independent constants. This
combining rule reduces the Scheffé polynomial (18) to the equation proposed by Jeong
et al. [11] for binary refrigerant mixtures. It also provides a general and consistent
framework for multicomponent mixtures showing quadratic composition dependence.
A fully predictive Scheffé mixing rule version is obtained when αi j = 1 ∀ i, j for the
cross terms in Eq. 26.

3 Model Testing: Results and Discussion

Table 1 lists the liquid mixture thermal-conductivity datasets used in this study. The
purpose of regression is to find the model that “best” fits the observations. This requires
model parameter estimates (coefficient matrix L) such that some predetermined cri-
terion is satisfied. Minimization of the sum of squares of the residuals was chosen for
the present analysis:

S(L) =
N∑

k=1

ε2
k =

N∑

k=1

[
yk − ŷk(L , xk)

]2 (37)
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Table 1 Liquid mixture thermal-conductivity datasets

System Description T ( ◦C)
P (bar)

Number of
datasets
(data points)

References

I 2,2,4-Trimethylpentane,
2-butanone, 2-propanol,
benzene, carbon
tetrachloride, chloroform,
cyclohexane, n-butanol,
n-butyl acetate,
n-heptane, n-hexane,
n-pentane, n-propanol,
and toluene

25 ◦C
Ambient
pressure

Ba: 47 (62)
Tb: 14 (168)

[25,32]

II 2,2,4-Trimethylpentane,
benzene, carbon
tetrachloride,
cyclohexane, n-heptane,
n-hexane, and toluene

40 ◦C
Ambient
pressure

B: 20 (21)
T: 7 (46)

[33]

III Liquid paraffin mixture:
heptane, dodecane, and
hexadecane

(20–90) ◦C
Atmospheric
pressure

B: 3 (54)
T: 1 (18)

[1]

IV Refrigerants R22
(chlorodifluoromethane),
R142b (1-chloro-1,1-
difluoroethane), and
R152a
(1,1-difluoroethane)

(−50 to 50) ◦C
(2.1–20.1)
bar

B: 6 (125) [5]

V Refrigerants R32
(difluoromethane), R125
(pentafluoroethane), and
R134a (1,1,1,2-
tetrafluoroethane)

(−50 to 80) ◦C
(2–30) bar

B: 3 (434)
T: 1 (212)

[2–4,6–8,10,11]

a B: Number of binary datasets
b T: Number of ternaries

The performance of Eqs. 5–10 to represent λ = λ(T, P) was tested using exper-
imental data for the pure refrigerants R22, R32, R125, R134a, R142b, and R152a.
The results are shown in Table 2. The uncertainty in the experimental data may be
as much as 2 % [3,4,10]. Taking this into consideration, the Chisholm (1, 1) model,
Eq. 9, adequately correlated the experimentally determined temperature and pressure
dependence for all refrigerants except perhaps R125. This model has four fewer para-
meters than the conventional matrix model, Eq. 5, and one less adjustable parameter
than the Taylor expansion, Eq. 8, yet provided comparable correlating performance.
Table 3 gives the values for the model parameters and the temperature and pressure
ranges for refrigerants R32, R125, and R134a. Note that the data for R125 are better
fitted by Eq. 10. See Table 2 and Fig. 1.

Table 4 and Figs. 2 and 3 show the performance of the various mixture rules with
respect to correlating the composition dependence of the isothermal-isobaric data for
System I. Deviations from the predictions of the linear blending rule were not large
in this case. The maximum deviation is only 15 %. The linear blending rule and the
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Table 3 Thermal-conductivity data for R32 [3, 4], R125 [6, 10], and R134a [3,10] fitted with Eq. 9

Refrigerant R32 R125 R134a

Number of data points 48 56 49
T range (K) 223.15–323.15 193.5–333.9 223.15–323.25
P range (bar) 2–20 2–30 2–20
Coefficients, Eq. 6
a0 2.970 × 10−1 1.950 × 10−1 2.553 × 10−1

a1 −7.258 × 10−4 −9.473 × 10−4 −4.776 × 10−4

a2 1.584 × 10−3 1.106 × 10−3 2.338 × 10−3

a11 – 1.155 × 10−6 –
a22 – 5.413 × 10−7 –
a12 – −1.708 × 10−6 –
b1 −1.256 × 10−3 −2.463 × 10−3 1.326 × 10−3

b2 6.120 × 10−3 5.284 × 10−3 1.520 × 10−2

AAD (%) 0.34 0.53 0.31
Max error (%) 2.10 1.78 0.78
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2 5
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Fig. 1 Effect of temperature and pressure on the thermal conductivity of liquid R125 correlated with the
Chisholm (2, 1) model defined by Eq. 10: data from Gao et al. [6] (open symbols) and Jeong et al. [4,10]
(solid symbols). Lines indicate predictions of Eq. 10

Vredeveld equations worked better when mass fractions were used as the composition
variable. Mole fractions provided better correlative performance for the Padé (2, 2)
and Wassiljewa models, while for the Scheffé model the performance was similar.
The Wassiljewa and Padé (2, 2) models performed best with maximum and average
absolute deviations of 2.4 % and 0.4 %, respectively. Similar comments apply to the
data for System II with experimental values determined at 40 ◦C. Figure 3 illustrates
the performance of the Vredeveld and Wassiljewa models. Here the AAD was less than
0.3 % and the maximum deviation was less than 2 %. The predictive Margules model,

123



Int J Thermophys (2008) 29:1342–1360 1355

Table 4 Comparing thermal-conductivity mixture models for isothermal System I [25,32]

Mixing rule AAD (%) Mass basis Mole basis

No. parameters Average Maximum Average Maximum

Linear blending rule – 3.88 9.60 6.23 14.74
Vredeveld – 2.19 9.56 4.13 9.86
Scheffé (2) 1 0.58 3.31 0.55 3.51
Margulesa (2) 2 0.39 2.95 0.43 3.08
Padé (2, 2) 2 0.57 2.5 0.39 2.31
Wassiljewa 2 0.43 3.12 0.38 2.39
a Binary predictive version with ternary constant defined by Eq. 29
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Fig. 2 Performance comparison of the linear blending rule, Vredeveld, Padé (2, 2), and Wassiljewa models
for correlating the composition dependence of thermal-conductivity data at 25 ◦C for System I [25,32]

Eq. 27 together with Eq. 29, did not offer advantages over the Wassiljewa model and
was not further considered.

Table 5 and Fig. 4 show the performance of various models with respect to the liquid
paraffin data [1]. The two combining rule options for the binary cross parameters were
compared. The adjustable parameters were determined using only the pure and binary
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Fig. 3 Performance of the Vredeveld and Wassiljewa models for correlating the isothermal (40 ◦C) thermal-
conductivity data of System II [33]

Table 5 Comparing thermal-conductivity mixture models for liquid paraffin mixtures (System III) [1]

Mixing rule AAD (%) Mass basis Mole basis

No. parameters Average Maximum Average Maximum

Linear blending rule – 0.64 2.12 2.28 5.55
Vredeveld – 1.21 3.22 0.42 1.49
Scheffé (2)a

Binary 1 0.37 1.71 0.58 2.18
Ternary 0.59 1.26 0.75 1.40

Scheffé (2)b

Binary 2 0.37 1.46 0.58 1.95
Ternary 0.55 1.49 0.50 1.53

Padé (2, 2)a

Binary 2 0.36 1.17 0.41 1.35
Ternary 0.37 0.93 0.37 1.09

Wassiljewa
Binary 2 0.36 1.43 0.37 1.46
Ternary 3.39 5.12 0.50 1.27

Ternary data predicted from model parameter fit using binary data where applicable
a Geometric combining rule (Eq. 34)
b Combining rule of Eq. 36

mixture property data. Ternary values were predicted and compared to experiment.
The linear blending rule did well when mass fractions were used as the composition
variable. It even outperformed the Vredeveld correlation. The mass fraction-based
Padé (2, 2) model did best, but was only marginally better than the quadratic Scheffé
model with the cross parameters defined by the geometric combining rule.

Table 6 shows the correlation results for the binary mixtures of R22 with either
R142b or R152a. Neither the linear blending rule nor the Vredeveld equation did
well here. However, the data were very well correlated with the second-order Scheffé
model, especially so when the combining rule of Eq. 34 was used. The Padé
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Fig. 4 Performance of the Vredeveld and Wassiljewa models for correlating the thermal-conductivity data
for the ternary mixture of heptane, dodecane, and hexadecane [1]

Table 6 Comparing thermal-conductivity mixture models for binary blends of refrigerant R22 with either
R142b or R152a (System IV) [5]

Mixing rule AAD (%) Mass basis Mole basis

No. parameters Average Maximum Average Maximum

Linear blending rule – 2.26 4.83 2.82 5.03
Vredeveld – 1.82 4.72 2.29 4.91
Scheffé (2)a Binary 1 0.44 1.33 0.48 1.78
Scheffé (2)b Binary 2 0.31 1.16 0.31 0.96
Padé (2, 2)a Binary 2 0.42 1.37 0.48 1.60
Wassiljewa Binary 2 0.39 1.60 0.39 1.59
a Geometric combining rule (Eq. 34)
b Combining rule of Eq. 36

(2, 2) and Wassiljewa models also did well. The former performed best with mass
fractions.

Tables 7 and 8 and Fig. 5 show the regression results for the ternary mixture of R32,
R125, and R134a. As before, model parameters were obtained using only pure and
binary mixture property data. The linear blending rule and the Vredeveld equation
did very poorly independent of whether the mass or mole fraction was selected as
the composition variable. The quadratic Scheffé model again performed surprisingly
well. In this case, it performed better with mass fraction than with mole fractions. The
Padé (2, 2) and Wassiljewa models did well too; the latter performed best with mole
fractions.

4 Conclusion

The correlation of experimental thermal-conductivity data for pure heat transfer fluids
and their ternary liquid mixtures was studied. The systems considered included the
extensive isothermal data, for ternary organic liquid mixtures, reported by Rowley and
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Table 7 Comparing thermal-conductivity mixture models for blends of R32, R125, and R134a (System
V) [2–4,6–8,10,11]

Mixing rule AAD (%) Mass basis Mole basis

No. parameters Average Maximum Average Maximum

Linear blending rule – 4.66 9.90 13.7 25.6
Vredeveld – 5.53 16.29 2.99 8.67
Scheffé (2)a

Binary 1 1.11 6.31 1.91 9.41
Ternary 1.95 4.57 2.62 5.62

Scheffé (2)b

Binary 2 1.08 5.78 1.95 10.61
Ternary 1.97 4.88 2.61 5.58

Padé (2, 2)a

Binary 2 1.10 6.68 1.08 5.37
Ternary 1.91 4.54 1.94 5.03

Wassiljewa
Binary 2 1.15 5.90 1.08 5.94
Ternary 2.18 5.1 1.91 4.82

Ternary data predicted from model parameter fit using binary data where applicable
a Geometric combining rule (Eq. 34)
b Combining rule of Eq. 36

Table 8 Selected thermal-conductivity mixture model parameters for the system of R32 [3,4], R125 [6,10],
and R134a [3,10]

a12 a13 a23

Scheffé mass basis (Geometric combining rule) 0.9509 0.9226 1.0130
a12 a13 a23 b12 b13 b23

Padé (2, 2) mass basis 0.9045 0.9215 1.0084 0.9542 0.9989 0.9954
α12 α13 α21 α23 α31 α32

Wassiljewa mole basis 0.4265 0.4643 1.7164 0.9494 1.7415 1.0146

coworkers [25,32,33]; the isobaric ternary liquid paraffin mixture reported by Wada
et al. [1]; and the ternary refrigerant system based on R32, R125, and R134a [2,4,6,
10,11]. It was found that the combined temperature (T ) and pressure (P) dependence
for pure refrigerants is adequately described by low-order Chisholm approximants.
These are rational functions based on truncated Taylor expansions in the two variables
of temperature and pressure. For most refrigerants investigated here, the Chisholm
(1, 1) approximant proved adequate. It is simply the ratio of two linear equations in T
and P and has five adjustable parameters. Maximum and absolute average deviations
(AAD’s) between experimental and predicted values were less than 2.5 % and 1 %,
respectively.

The observed isothermal-isobaric thermal-conductivity composition dependence
did not deviate much from the linear blending rule. If mass fractions are used as the
composition variable, the maximum deviations from the linear blending rule were
less than 10 % for the data of Rowley et al. [25]. The fully predictive Vredeveld cor-
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Fig. 5 Performance of the Vredeveld and Wassiljewa models for correlating the thermal-conductivity data
for the ternary refrigerant mixture of R32, R125, and R134a [2–4,6,10,11]

relation is a mass fraction-weighted power mean of order −2 and is considered to
be one of the better empirical models for liquid thermal conductivity [14]. For the
present data, it proved inferior to the linear blending rule in some cases. The Padé
(2, 2) model is a ratio of two quadratic Scheffé polynomials. Mixture composition
effects were well represented using the quadratic Scheffé, the Padé (2, 2) approxi-
mant, or the Wassiljewa equation [30]. The latter two equations feature two adjustable
binary cross parameters per binary instead of the single one for the quadratic Scheffé
model. Two combining rules were considered. The simplest assumes that the binary
cross parameters are proportional to the geometric mean of the pure-component ther-
mal conductivities. The second is suggested by the theoretical Wassiljewa equation
[30], first derived for the thermal conductivity of ideal-gas mixtures. When applied to
the quadratic Scheffé polynomial, the number of adjustable parameters is increased
to two per binary. With these proposals, the temperature dependence is fixed by the
behavior of the pure components. These concepts were tested using the data for R32,
R125, and R134a mixtures [2,4,6,10,11]. All three models predict ternary and higher
mixture behavior from a knowledge of binary data. Therefore, only binary data were
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regressed to fix model parameters. The observed predictions for ternary compositions
indicated the following: the Scheffé and Padé (2, 2) models work well when mass
fractions are used whereas the Wassiljewa model fares better with mole fractions as
the composition variable. Compared to previous suggestions [3–5,7,10], these models
feature far fewer adjustable parameters yet provide acceptable data correlation per-
formance and predictions for ternary mixtures. Furthermore, the adjustable constants
in the mixture rule were temperature- and pressure-independent. Thus, these models
should in the future be considered for correlating new thermal-conductivity data for
other multicomponent liquid mixtures.
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